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Tests of General Relativity
Using Starprobe Radio Metric Tracking Data

Kenneth D. Mease,* John D. Anderson,| Lincoln J. Wood,J and Lisa K. White§
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

The potential of a proposed spacecraft mission called Starprobe for testing general relativity and providing
information on the interior structure and dynamics of the sun is investigated. The current mission plan is to place
a spacecraft in a highly eccentric, highly inclined solar orbit with a perihelion distance of four solar radii.
Parametric, gravitational perturbation terms are derived that represent relativistic effects and effects due to
spatial and temporal variations in the solar potential at a given radial distance. The perturbation terms are in-
corporated into the equations of motion and radio metric data models for Starprobe. A covariance analysis
based on Kalman filtering theory predicts the accuracies with which the free parameters in the perturbation
terms can be estimated with radio metric tracking data through the process of trajectory reconstruction. It is
concluded that Starprobe can contribute significant information on both the nature of gravitation and the
structure and dynamics of the solar interior.

Introduction

SENDING a probe to the sun offers unique opportunities
for testing general relativity and for refining models of the

solar interior. One of the few opportunities for experimentally
testing general relativity in our solar system is to verify the
predicted perihelion advance of Mercury's orbit. Indeed, the
advance has been measured to about G.5%.1 (All errors
quoted in this paper are in terms of the standard deviation.)
However, it has been apparent since the early 1960s that the
advance could also be due, at least in part, to a solar
oblateness.2 Attempts to measure the oblateness by Earth-
based visual methods have yielded conflicting results.3'4
Moreover, it is not the visual oblateness, but the oblateness of
the surfaces of constant gravitational potential, that is im-
portant in the perihelion advance of Mercury's orbit. In the
standard spherical harmonic model of the external solar
gravitational potential, it is the quadrupole moment coef-
ficient J2 that characterizes the amount of oblateness. The
value of J2 also places limits on the density, angular velocity,
and magnetic field distributions within the sun and is
therefore useful in developing and testing models of the solar
interior.5 Thus, a direct determination of the value of J2 is
important.

The standard method of determining a body's gravitational
coefficients, such as /2, is to infer their values from per-
turbations (deviations not predicted by Newtonian point-mass
mechanics) in the trajectory of a probe flying close by or
orbiting the body. With this motivation, along with the ad-
ditional motivation for particles and fields studies as well as
imaging science at the sun, a mission called Starprobe has
been proposed and studied.5'6 The most recent mission
scenario is to place a spacecraft in a highly eccentric, highly
inclined heliocentric orbit with a perihelion distance of four
solar radii. Given a carefully designed Doppler tracking
system and an onboard ''drag-compensation" system to
actively maintain the spacecraft on a trajectory determined
almost exclusively by gravitational forces, it is possible,7-12 to
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determine J2 to a precision of one or two parts in 108. This
would be a very useful result to both relativity testing and
solar modeling.

The purpose of this paper is to examine additional scientific
objectives that may be achievable through an analysis of
gravitational perturbations on the Starprobe spacecraft and
the radio signals used to track it. These objectives include
looking for preferred-frame effects, testing a new theory of
relativity proposed by Moffat,13 determining the sun's
angular momentum, measuring a normal mode of solar
oscillation, and detecting a distortion in the surfaces of
constant gravitational potential that has been hypothesized by
Dicke.14 The appropriate gravitational perturbations are
represented parametrically in the equations of motion for the
probe and in the models for the radio metric tracking data.
Then, a covariance analysis, based on Kalman filtering
theory, predicts the accuracies with which the unknown
parameters characterizing the perturbations can be deter-
mined with Earth-based radio metric tracking data. The
accuracies are computed as functions of the quality and
quantity of the radio metric data, the parameters specifying
the solar orbit, the magnitude of the effective non-
gravitational accelerations acting on the spacecraft, and the
errors in the tracking station locations and in the ephemeris of
the Earth relative to the sun. The results of the covariance
analysis provide a quantitative measure of the scientific value
of one aspect of the Starprobe mission and, in addition,
useful insight into how to design the mission to maximize this
scientific value. We wish to stress, however, that our analysis
assumes that Starprobe tracking data will, in fact, conform to
the parametric theories employed in our study. This may not
be the case, which leads to the point that the ultimate scientific
value of a data-gathering mission such as Starprobe can never
be completely determined in advance. The data may well
contain features that we have not anticipated.

Gravitational Perturbations
and Their Parametric Representations

PPN Formalism
The parameterized post-Newtonian (PPN) formalism is a

convenient framework in which to test theories of gravitation.
This formalism15 provides a general space-time metric for
testing a broad class of metric theories of gravitation in the
solar system. The PPN metric is a truncated expansion about
the Minkowski " flat-space" metric in terms of dimensionless
gravitational potentials of varying degrees of smallness. The
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PPN metric includes 10 free parameters (/3,7,£,a7,a2,a5,
fy> & * & > & ) • The various metric theories are distinguished by
the particular values assumed by these parameters.

For the Starprobe studies, we shall consider a reduced form
of the PPN metric in which only the terms involving ft 7, and
dj are retained. The terms involving 0 and 7 represent the
lowest-order terms in the post-Newtonian description of space
and time and, hence, are essential to tests of general relativity.
Heuristically speaking, 0 is a measure of the nonlinearity in
the superposition law for gravity, and 7 is a measure of the
space-curvature produced by a unit rest mass. General
relativity predicts a value of unity for both 0 and 7. The value
of 7 has been most accurately determined from the apparent
time delay of electromagnetic radiation passing near the sun.
The most recent analysis of the time-delay data for the Viking
spacecraft near conj unction yieldsl6

7 =1.000 ±0.002 (1)

The most accurate data for determining the value of /3 are
measurements of the perihelion advance of Mercury's orbit.
The measured excess advance, the amount not explained by
Newtonian point-mass mechanics, as determined from
planetary ranging data, is1

Aw = 43." 3 ± 0." 2 per century (2)

In the PPN formalism, neglecting all terms contributing less
than 0/1 per century, the theoretical precession is

l."26J2 X 105 - 124.'48a7 (3)

Thus, although the perihelion advance is measured directly,
its interpretation as a test of general relativity is confounded
by the presence of too many unknown parameters. In-
dependent measurements of J2 and a7 by Starprobe would
provide a way out of this dilemma. The parameter a} is one of
three preferred-frame parameters (a7,a2,a5), all of which
are zero in general relativity, but which could take on nonzero
values for gravitational theories based on a preferred frame of
rest for the universe. We do not include a2 and ot3 because
rather stringent upper bounds have been set on their
magnitudes by planetary motions1 and by data on Earth
tides. 17 On the other hand, the parameter a} could be as large
as 0. 1 and still go undetected in existing data. Starprobe could
make a significant contribution to experimental gravitation by
reducing the uncertainty in our knowledge of the value of a7 .

We shall also include a post-Newtonian term containing an
additional unknown parameter T in the metric for the Star-
probe studies for the purpose of considering a recent theory of
gravitation put forth by Moffat.13 This theory is not
represented in the standard PPN metric; and, in that regard, it
must be considered separately from other competing theories
of gravitation when performing experimental tests. In ad-
dition, the usual tests of general relativity do not place par-
ticularly strong limits on the validity of the Moffat theory.
The parameter that Moffat uses in the formulation of his
theory is f, which is measured in units of distance and which
assumes a unique value for each gravitating body. We use the
dimensionless parameter T= (ts/Rs)4, where ts is the value of
t for the sun and Rs is the mean radius of the sun. The tightest
bound on ts, derived from interplanetary radar observations
of Mercury's perihelion advance,18 is l£j<(2.92
±0.10) x 103 km; however, the gravitational oblateness of the
sun, as characterized by /2, is ignored in the derivation of the
bound. A less stringent bound, but one that does not depend
on the value of /2, is derived from the Viking time delay data,
yielding l£5 1 < 1.13 x 104 km.18 Starprobe has the potential to
measure ls, or equivalently r, to an accuracy that would either
limit the theory so severely that it becomes uninteresting as a
competitor to general relativity (in which £5 = 0) or, alter-
natively, to show that it is preferable.

Equations of Motion
The equations of motion for the spacecraft, which are

consistent with the PPN metric described above, are derived
in the Appendix. The equations assume the convenient form
of Newton's second law of motion, with additional per-
turbative acceleration terms characterizing the post-
Newtonian effects. We include a further post-Newtonian
effect, the Lense-Thirring effect, which represents the
dragging of the inertial frame of the solar system by the
rotating sun. The perturbative acceleration caused by the
Lense-Thirring effect is given by Weinberg.19 Because the
effect is a function of the angular momentum of the sun, it is
possible that Starprobe could measure this important
quantity. With the addition of the Lense-Thirring term, the
equations of motion, in vector form, are (dots denote
derivatives with respect to coordinate time)

(4)

where r, r, and r are, respectively, the heliocentric position,
velocity, and acceleration vectors of the spacecraft, and r is
the Euclidean norm of r, \L the product of the gravitational
constant and the mass of the sun, c the velocity of light in
vacuo, m = n/c2 one-half the gravitational radius of the sun,
Rs the mean radius of the sun, iz a unit vector parallel to the
spin axis of the sun, and L the magnitude of the sun's angular
momentum per unit mass (the specific angular momentum
vector is Liz, i.e., we assume that a principal axis and the spin
axis spatially coincide). A dot between two vectors denotes an
inner product, and an x between two vectors denotes a cross
product. The velocity vector w represents the motion of the
solar system with respect to the frame of rest of the universe.
We assume that w, in the Earth mean equator and equinox
of 1950 coordinate frame, is a constant vector equal to
(- 353.44, 28.93, 34.08) km/s, a weighted average of the four
most recent measurements of the velocity of the solar system
with respect to the cosmic microwave background radiation.20

The first term on the right-hand side of Eq. (4) represents
the Newtonian acceleration imposed on the spacecraft by the
sun and is equal to - V V, where V— — p/r is the
gravitational potential and V the gradient operator. This
model of the potential is exact only if the sun acts
gravitationally as a spherically symmetric distribution of
mass. However, with a perihelion distance of four solar radii,
the Starprobe spacecraft will be affected by asymmetries in
the solar mass distribution, constant or time varying.
Detection of these mass distribution asymmetries can yield
important information on the internal structure and dynamics
of the sun. Consequently, we shall henceforth model the
potential as

- - (— ) [ (C27cosA + S27 sin A) Pi (sine/)) + (C22cos2A
r \ r /

+ S22sin2\)P2
2(s'm<t>)]+J4- - ^ ( s i (5)
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where 0 is the latitude measured from the solar equator, X the
longitude measured from the prime meridian, Pn the nth
order Legendre polynomial, and JP™ the associated Legendre
function of the first kind. The first term on the right-hand
side has been described above. It is the lowest-order term,
and, through most of Starprobe's heliocentric orbit, it
represents the solar potential very well. However, for a few
hours around perihelion, the second, third, and fourth terms
may be required. The second term is due to the quadrupole
moment, which characterizes the polar flattening and the
equatorial bulge of the surfaces of constant potential. The
constant parameter J2 measures the mean level of the
oblateness, while the term Asin(2irft+^) measures a
sinusoidal fluctuation about the mean level as a function of
time. The values of J2, predicted by various theoretical
models of the solar interior, range from 9x 10~8 to 2x 10~6

(see Ref. 5). The value of J2 has also been inferred from
measurements of the visual oblateness of the sun. Dicke and
Goldenberg3 infer a value of (2.47±0.23)x 10~5 while Hill
and Stebbins4 infer a value of (0.10±0.43)x 10~5. More
reently, a value of (0.55 ±0.13) x 10 ~5 has been inferred from
the rotational splitting of global solar oscillations.38

A new method of probing the solar interior involves the
detection and identification of the normal modes of global
solar oscillations. The oscillations are external manifestations
of internal processes and can be employed in a manner
analogous to the way in which seismic waves are used to infer
the internal structure and dynamics of the Earth. The
existence of 5 min period global oscillations is now generally
accepted.21 Oscillations with a 160 min period have also been
reported22'23; however, their existence is a point of con-
troversy. Thus far, the evidence for oscillations has come
from Earth-based visual or radio frequency Doppler
measurements of the sun's surface. The interpretation of such
measurements is difficult, because a number of other
phenomena (including artifacts of the data analysis) can
produce or imply oscillations that can be confused with the
oscillations due to internal processes. Therefore, it has been
suggested24'25 that one could alternatively look for per-
turbations in the solar gravitational potential, which are
predicted to occur as a result of certain modes of the global
oscillations. The modification Asm(2irft + ̂ )9 which has
been added to the constant parameter J2 in the second term of
Eq. (5), represents a time-varying perturbation to the
quadrupole moment. Christensen-Dalsgaard and Gough26

have suggested that the reported 160 min oscillations might
give rise to an oscillatory quadrupole moment. Assuming a
uniform solar rotation, the amplitude of the quadrupole
moment oscillation would be only a factor of three or so less
than the static component, / 2 = 2 x l O ~ 7 , induced by cen-
trifugal forces.26 For the Starprobe studies, we shall let
/= 17(160 min) and assume that ¥ is known; thus, the am-
plitude A is the only free parameter characterizing the
oscillation. Note that ^ is, in fact, not known. We are
assuming here that concurrent Earth-based observations will
yield the value of ^. For our baseline case, ^ = 0; however, if
it is set equal to some other value, the covariance results do
not change (based on numerical experiments).

The rationale for the third term on the right-hand side of
Eq. (5) is as follows. Analyzing optical measurements of the
elliptical figure of the sun made in 1966, Dicke found a
periodic signal that he hypothesized to be caused by a solar
distortion rotating rigidly as a wave on the surface.14 The
distortion is in the form of an ellipsoid, with its major axis
tilted 5 deg with respect to the equatorial plane. The sidereal
rotation period is 12.38 days,27 about half that of the surface
rotation at the equator. Both the distortion and the surface
rotate about a common spin axis. Dicke attributed the
rotating distortion to a distorted core, due most likely to a
strong (« 108 G) magnetic field, "frozen" in the core.14 If the
core is indeed distorted, it will induce distortions in the
surfaces of constant gravitational potential. To a first ap-

proximation, the distortions can be modeled by including the
tesseral harmonic terms that comprise the third term in the
potential of Eq. (5). The parameters C2}, S21, C22, and S22
can be treated as static by allowing the gravitational potential
model to rotate about the sun's spin axis with a sidereal period
of 12.38 days.

The fourth term in the potential is included for com-
pleteness; however, it has been shown12 that, even if the
magnitude of J4 is equal to the largest theoretically deter-
mined upper limit of 1.5 x 10 ~8 (see Ref. 28), J4 could not be
determined by Starprobe.

Radio Metric Data Models
The coordinate time of propagation of a radio signal

between a tracking station on Earth and Starprobe is

(6)

where p, rE> and rp are coordinate distances representing,
respectively, the distance between the station and the
spacecraft, the heliocentric distance of the station, and the
heliocentric distance of the spacecraft. The angles 07 and 62
are, respectively, the sun/station/probe angle and the station/
sun/probe angle. A derivation of Eq. (6) is presented in the
Appendix. The second term on the right-hand side of the
equation results from an "excess" relativistic time delay of
the radio signal consistent with the description of space and
time given by the PPN metric. The third term results from a
decrease in the time delay predicted by the Moffat theory.

For a model of actual range data, the coordinate time delay
of Eq. (6) must be transformed to a proper time for a clock at
the tracking station on Earth, and the round-trip light-time
equation solved. For a statistical error analysis, it is un-
necessary to transform to proper time, because the parameters
/3, 7, otj, and r do not enter into the time transformation to the
first order in m/r. Also, for an error analysis, the round-trip
light time between a station on Earth and Starprobe can be
represented by simply doubling Eq. (6).

In constructing actual round-trip Doppler data over a finite
count time, the standard procedure is to compute round-trip
range at the beginning and end of the counting interval and
then to difference the two range computations to obtain the
integrated Doppler. For the Starprobe studies, however, we
use range rate to represent the Doppler data. These pseudo
Doppler data are represented by differentiating Eq. (6) with
respect to time.

Parameter Estimation
In the previous section, the anticipated gravitational

perturbations to the Starprobe trajectory and the radio
tracking signals have been characterized by parametric ex-
pressions. Provided that the expressions are sufficient to
model the perturbations, what remains for Starprobe is to
determine the values of the free parameters. The procedure
for doing so can be cast as a standard orbit determination
problem. Specifically, the equations of motion for the
Starprobe spacecraft, coupled with the models of the radio
metri data, are used to generate predicted tracking data as
functions of the free parameters discussed above and other
more conventional orbit determination parameters, such as
the six components of the spacecraft state. The values of the
parameters are then adjusted until the predicted data agree
with the actual measured data in a weighted least-squares
sense.

There are two technical problems that confront the
parameter estimation. The first problem is that non-
gravitational forces such as solar radiation pressure, which
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cannot be modeled or measured to sufficient accuracy, will
act on the spacecraft in addition to the gravitational forces
discussed above. The solution to this problem is an onboard
"drag-compensation" system.29 The second problem is that
the radio metric data around perihelion, which are crucial for
estimating the parameters of interest, are corrupted by tur-
bulence in the solar corona. A sophisticated Doppler tracking
system is being studied to solve this problem.30

Covariance Analysis
A covariance analysis is performed in order to predict the

accuracies with which the values of the parameters associated
with gravitational perturbations can be determined with
Starprobe radio tracking data and to determine how other
parameters in the problem, and the uncertainties in their
values, influence those accuracies. The parameters to be
estimated and the radio metric data are assumed to be
Gaussian random variables and, consequently, to be fully
characterized by their mean values and covariance matrix. In
the linearized Kalman filtering approach to parameter
estimation, the time propagation and measurement updating
of the covariance matrix is independent of the processing of
the data residuals to compute the estimated mean values
(although the converse is not true). Thus, given a data
schedule, the statistical properties of the process and
measurement noises, an a priori covariance matrix for the
estimated parameters, and appropriate transition matrices
based on a nominal trajectory, the a posteriori covariance
matrix for the estimated parameters can be derived. The a
posteriori covariance matrix is computed using Bierman's
factorized formulation of the Kalman sequential filter.31

Partial derivatives of the spacecraft state with respect to the
estimated parameters are required for the linearized Kalman
filter. They are obtained by integrating variational equations.
The variational equations are formulated by differentiating
the equations of motion with respect to the estimated
parameters.

Due to the complicated nature of the computational soft-
ware used to perform the covariance analysis, it is desirable to
have an independent check of the results. The software used
for the present analysis has been checked against another set
of software developed independently by Anderson and Lau.9

Under conditions that overlap as much as possible, the two
sets of software produce essentially identical results.

Since the covariance analysis involves parametric studies of
the sensitivity of the a posteriori error covariance matrix for
the estimated parameters to variations in the a priori
assumptions, it is useful to define a baseline case and then to
vary certain a priori assumptions one at a time.

Baseline Case
The nominal spacecraft trajectory is consistent with the AV-

EJGA design presented in detail in Ref. 32. Following gravity
assists from the Earth and, subsequently, Jupiter, the
spacecraft will be in a heliocentric orbit specified by the
classical elements (a-406432329.0 km, e = 0.99331, i = 90.0
deg, ft =160.14 deg, co= -178.66 deg, ^ = 7/16/94/0 h) as
referenced to the Earth mean ecliptic and equinox of 1950
coordinate frame. The time of perihelion given is consistent
with a launch on Sept. 6, 1988. (This launch date is purely
hypothetical.) The distance from the sun's center at perihelion
is four solar radii. The heliocentric orbit is nearly polar. The
transit time from pole to pole, through perihelion, is less than
14 h, the spacecraft reaching a speed of approximately 300
km/s at perihelion.

The radio tracking data arc extends from - 7 to +2 days
relative to perihelion. Both range and Doppler data types are
assumed with standard deviations of 15 m and 0.1 mm/s (for
a 1 min count time), respectively. Data rates are highest
during the 10 h period centered at perihelion time: one datum
every 30 min for range and one datum every 5 min for
Doppler. See Table 2 of Ref. 12 for a detailed data schedule.

The estimated parameters are the heliocentric position and
velocity components of the spacecraft and the Earth, J2, A, (3,
y, a.1} and r and the effective nongravitational accelerations
(i.e., the nongravitational accelerations that are not com-
pensated for by the drag compensation system). The effective
nongravitational accelerations are modeled as biases. The
parameters ATAR, AT AX, and AT AY are the magnitudes of
three such orthogonal accelerations, acting along the
spacecraft roll, pitch, and yaw axes, respectively. (The roll
axis is always oriented in the direction of the sun.) The effects
of nongravitational accelerations, with finite correlation
times, on the accuracy with which a somewhat reduced set of
the above parameters can be estimated, have been reported
elsewhere.12

Equivalent station location errors (for stations 14, 43, and
63) and errors in the parameters J4 and /JL are "considered" in
the covariance analysis. Equivalent station location errors
include crust-fixed station location errors plus residual
calibration errors associated with transmission media effects,
polar motion, and Earth spin rate, since all of these errors
affect the estimation accuracy in roughly the same manner.
To consider errors in the present context means to introduce
the errors after the a posteriori covariance matrix has been
computed by the filter. The filter is run first, sequentially
processing all of the data, with the values of the considered
parameters assumed to be known exactly. This yields a
covariance matrix for the errors in the estimated parameters.
Then, the covariance matrix for the errors in the estimated
parameters, which are due only to the uncertainty in the
considered parameters, is computed. The sum of this matrix
and the covariance matrix produced by the filter yields the
considered covariance matrix. It is important to distinguish
between this approach to estimation in the presence of un-
certain parameters31 and the less conservative Schmidt-
Kalman filtering approach.33

A priori standard deviations for the estimated and con-
sidered parameters are given in Table 1. The coordinates are
referenced to the Earth mean-equator and equinox of 1950
frame. The errors in the components of the Earth state are
correlated. The a priori standard deviations for the spacecraft
state are chosen to be large, so as to have little impact on the
final results. The a priori standard deviation for r is
equivalent to a conservative upper bound of \(s I <2 x 104 km.
The a priori standard deviation for n corresponds to a 20 m
uncertainty in the astronomical unit. The a priori standard
deviation for J4 is equal to the largest theoretically derived
upper bound on J4.2B

Also presented in Table 1 are the a posteriori standard
deviations of the estimated parameters after the sequential
processing of all of the data. The first column of a posteriori
standard deviations contains the values computed by the
filter, assuming no J4, /*, or equivalent station location errors.
The second column contains the "postfiltering" adjusted
values that result when J4, \L, and equivalent station location
errors are considered. Observe that, for certain estimated
constant parameters, the considered a posteriori standard
deviation is larger than the corresponding a priori value. This
situation arises when data appearing to contain information
are used by the filter to reduce the uncertainty in the estimated
parameters; yet, when the considered errors are accounted
for, it turns out that the data did not contain truly useful
information due to mismodeling effects and actually in-
creased the uncertainty in the estimated parameter values. If
only the \L and J4 errors are considered, we find that the
considered a posteriori standard deviations equal the a
posteriori values from the filter. Thus, it is the equivalent
station location errors that cause the disruptive effect. The
rationale behind considering equivalent station location errors
is that the alternative of estimating these quantities may lead
to an unrealistic reduction in their uncertainties. In other
words, the models in the covariance analysis software for
equivalent station location parameters are not adequate to
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assess whether or not the associated errors could be reduced
by estimation. However, it should be noted that the con-
sidered error analysis is a "worst-case" analysis in the sense
that the filter is formulated in complete ignorance of the
considered errors. Nonetheless, we choose to be conservative
rather than overly optimistic and shall discuss only the
considered a posteriori standard deviations in the remainder
of the paper.

The baseline case was also run with an extended data arc,
which began 30 days prior to perihelion and ended 30 days
after perihelion. The a posteriori standard deviations did not
differ significantly from those for the 9 day data arc. In fact,
an examination of the evolution of the a posteriori standard
deviations as each data point is processed reveals that the
parameters characterizing the gravitational perturbations are
not observable until roughly 10 h prior to perihelion. We have

Table 1 Baseline standard deviations

Standard deviations
Considered

Estimated parameter A priori A posteriori a posteriori

Spacecraft state
x, km
y, km
z, km
x, mm/s
j, mm/s
z, mm/s

Earth state
Jt, km
y, km
z, km
x, mm/s
y, mm/s
z, mm/s

J2 x 108

A x 108

/3xl02

-yXlO2

oij X 103

T X l O 1 2

Effective non-
gravitational
accelerations,
km/s2 x 1012

ATAR
ATAX
ATAY

Considered parameter
J4 x 108

ju, km3/s2

Station spin radii, m
Station longitudes, m
Station heights from

equatorial plane, m

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

4.7
4.7
9.3
1.0
1.0
2.0

100.0
100.0

1.0
1.0

100.0
6.82 xlO 5

1.0
1.0
1.0

1.5
68.0
0.8
0.8
0.8

1.0
1.0
0.8
2.4
3.8
4.9

1.2
0.7
2.1
0.2
0.8
1.8
1.0
1.0
1.0
1.0
1.3
1.4

0.7
1.0
1.0

4.5
3.0
5.6
9.4

12.4
29.9

9.6
10.7
25.1

1.3
1.7
5.0
2.5
2.1
1.0
1.6
7.0
2.6

1.9
1.2
1.1

chosen to start the baseline data arc at 7 days before
perihelion to assure that a realistic covariance for the
spacecraft state has been established by the time the
gravitational parameters become observable.

When the magnitude of the solar angular momentum L is
included as an estimated parameter, we find that it is
unobservable with Starprobe tracking. This is true even with
an order of magnitude improvement in the Doppler accuracy
(a = 0.01 mm/s).

Sensitivity Studies
The sensitivity of the above results to variations in certain

baseline assumptions is shown in Tables 2-4. In each table, the
conditions assumed to generate the results are identical to
those of the baseline case, except as noted. Attention is
restricted to the parameters of scientific interest. Only the
considered a posteriori standard deviations, after the
processing of all the data in the 9 day arc, are presented.

The motivation for generating Table 2 is that 1) an im-
proved Doppler system is being discussed, possibly producing
measurements with a standard deviation of 0.01 mm/s for a 1
min count time; and 2) it is of much interest to know whether
the perihelion distance can be raised in order to reduce the
heat shield requirements and thereby cut mission costs. A
reduced value for station location errors is used for the more
precise Doppler cases because the improved Doppler is useful
only if there is a corresponding improvement in station
location errors.12 It is clear, from the results shown, that
raising the perihelion distance from four solar radii quickly
degrades the determination of the gravitational parameters.
The apparent improvement seen for 7 in the baseline Doppler
accuracy (0.1 mm/s) case is an artifact of the considered
statistics. The a priori error for 7 is 1 .0x lO~ 2 , and a
posteriori errors greater than this mean simply that the
parameter is unobservable. For the improved Doppler system
(a = 0.01 mm/s), there is an improvement in the determination
of some of the parameters and a reduction in the sensitivity to
perihelion distance for J2, A, and ar However, these results
rest on the assumption of reduced station location errors.

In order to emphasize the importance of station location
errors in the estimation problem, the baseline case has been
run with four sets of station location errors (Table 3). The
largest errors shown are the current values. The 0.8 m errors
are projected errors for the 1990s.

The second half of Table 3 shows the sensitivity of the
estimation accuracies to variations in the level of
nongravitational acceleration biases. At the levels tested,
these are less important error sources than the station
locations. For a more comprehensive treatment of
nongravitational accelerations, see Ref. 12.

We examined the sensitivity of the estimation accuracy to
the inclination of the heliocentric orbit. The considered a
posteriori standard deviation for J2 goes from 2.5 to 3.4 to
19.0 parts in 108 as the inclination goes from 90 to 50 to 0 deg.

Table 2 Sensitivity to variation in perihelion distance Rp for two combinations of Doppler accuracy and station location errors

Considered a posteriori standard deviations

Estimated parameter

Doppler accuracy (1 a) = 0.1 mm/s
Station errors3 (la) =0.8m

Doppler accuracy = 0.01 mm/s
Station errorsa = 0.2 m

aSame for all three components.

8/?c

J2 x 108

/4xl0 8

/3xl02

•yXlO 2

Of; X 103

T X l O 1 2

2.5
2.1
1.0
1.6
7.0
2.6

12.2
4.6
1.0
1.2

18.0
10.5

19.0
10.2
1.0
1.1

38.6
33.1

2.5
0.4
2.8
5.8
2.8
6.3

7.0
0.7
3.5
7.6
5.3
30.8

12.2
1.8
3.1
5.8

11.9
50.9
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Table 3 Sensitivity to variations in station location errors and to variations in the level of nongravitational acceleration biases

Changes from baseline assumptions
(standard deviations of parameters)

Station spin
radii, m

0.0
0.2
0.8
1.0

Station
longitudes, m

0.0
0.2
0.8

2.0a

Station heights
from equatorial

plane, m

0.0
0.2
0.8

10.0

Considered a posteriori standard deviations
J2 x 108

1.1
1.0
2.5
5.9

,4 XlO 8

1.0
1.1
2.1
8.2

0xl02

1.0
1.0
1.0
2.1

7 X l O 2

1.0
1.0
1.6

10.8

0!; X 103

1.3
2.1
7.0

65.9

rXlO 1 2

1.4
1.5
2.6

13.8

ATAR, km/s2 AT AX, km/s2 ATAY, km/s2

10-
10-
10-

13
12
11

10-
10-
10-

13
12
11

10-
10-
10-

13
12
11

2.1
2.5
3.0

2.1
2.1
2.1

1.0
1.0
1.0

1.6
1.6
1.7

6.5
7.0
7.9

2.4
2.6
2.9

aThe longitude errors for the three stations are correlated (p = 0.9).

Table 4 Sensitivity to distortion in the solar gravitational potential as hypothesized by Dicke

Odeg
Estimated
parameter A priori

J2 x 108

C2] x 108

S21 x 108

C22 x 108

S22 x 108

,4 x lO 8

0xl02

7 X l O 2

a1 X 103

T X l O 1 2

100.0
0.0
0.0
0.0
0.0

100.0
1.0
1.0

100.0
6.82 x lO 5

Standard deviation: tilt of 5 deg major axis of solar distortion
Considered Considered
a posteriori A priori a posteriori

2.5
0.0
0.0
0.0
0.0
2.1
1.0
1.6
7.0
2.6

100.0
35.0
35.0
0.75
0.75

100.0
1.0
1.0

100.0
6.82X105

4.3
30.7
3.0
0.75
0.83
1.9
1.0
1.5

35.1
2.2

10 deg
Considered

A priori a posteriori

100.0
68.0
68.0
3.0
3.0

100.0
1.0
1.0

100.0
6.82 x lO 5

7.3
34.3
2.9
3.2
5.6
1.8
1.0
1.5

37.2
2.1

Table 5 Combination of the Starprobe results
with the results of other relativity experiments

Standard deviations
Starprobe plus
three existing

Parameters Starprobe alone measurements

J2
0
7
«/

7 .4x lO~ 8

1.00
1.00

0.0083

0.93X10-8

0.0024
0.0007
0.0006

Similar results are found for A, ctj, and T. The parameters 0
and 7 are unobservable at all three inclinations.

Table 4 represents an attempt to assess the impact of the
distortion in the solar gravitational potential, which has been
hypothesized by Dicke, on the parameter estimation problem.
Our approach makes use of analytical expressions for
transforming known gravity potential coefficients (J2, C21,
S21, C22, S22) in a given coordinate system to their
corresponding values in a rotated coordinate system.34 We
begin by assuming J2 =4.Ox 10~6, a reasonable upper bound
on the oblateness, and C21 =S2} = C22 = S22=Q. These values
are then transformed by either a 5 or 10 deg rotation about an
axis in the solar equatorial plane that intersects the center of
the sun and a given line of constant longitude. This produces
nonzero values for C27, S21, C22, and S22. This procedure is
repeated for different axes of rotation that vary in the
longitude line they intersect (0-90 deg). This establishes the
upper bounds on the four parameters, which are, in turn, used
as a priori standard deviations. In effect, we are assuming
that the distortion in the gravitational potential is describable
by J2 alone, but that we have chosen the wrong axis of

symmetry for our gravity model (namely, the spin axis) and
must therefore estimate all five coefficients (J2> C21, S2l, C22,
S22), in order to characterize the distortion. In Table 4, the 0
deg case corresponds to the situation in which the correct axis
of symmetry is the spin axis or, equivalently, in which the
major axis of the ellipsoidal solar distortion is in the
equatorial plane (i.e., untilted). While there are many
alternative approaches to studying this problem, and our
study is far from exhaustive, a few conclusions can be drawn.
First, an examination of the full a posteriori covariance
matrix reveals that C2l and S21 are correlated with a;
(correlation coefficient = 0.97) and cause the disruption in its
determination. Second, the determination of J2 worsens as
the tilt increases. Third, the inclination of the Starprobe orbit
and the position of the sun in its rotation become important
when the longitudinally dependent potential terms charac-
terized by (C21t S21, C22, S22) are necessary to describe the
potential. In the particular situation investigated here, the
data contain information on S21 but not on C2/, C22, or S22.

Impact of Starprobe
on Testing of Gravitational Theories

The overall impact of the Starprobe results on testing of
gravitational theories becomes apparent when the predicted
results are combined with existing measurements. Here we
consider only the parameters 72, 0, 7, and otr There are three
existing measurements that yield information about the four
parameters. These are the measurement of Mercury's
perihelion advance, the Viking time-delay measurement, and
the measurement by laser ranging of the synodic perturbation
in the orbit of the moon. Mercury's perihelion advance yields
information on a linear combination of the four parameters
[see Eq. (3)]. The Viking experiment measures 7 alone [see
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Eq. (1)]. The lunar laser data have been analyzed by two
independent teams of investigators.35'36 Similar results were
obtained. We quote, here, the result with the larger error,35

namely,
4/3-7-3 -0^=0.00±0.03 (7)

Thus, the parameter 7 is well known from the Viking ex-
periment, but there are no experiments at comparable ac-
curacy for the other three parameters. The three parameters
cannot be uniquely separated by only two measurements. In
the past, whenever results have been quoted for f3, it has been
necessary to make the arbitrary assumption that exy =0. With
the addition of the Starprobe measurement, this situation
would be rectified.

To quantify this last statement, we have combined
statistically the three existing measurements and the in-
formation from the Starprobe covariance analysis. Because
all three existing measurements should be improved in the
next few years, the current published errors have been reduced
by a factor of three, a reasonable estimate. The resulting
errors from Starprobe alone and from a combination of
Starprobe with the three existing measurements are shown in
Table 5. Note that the results given for Starprobe alone differ
from those given for the baseline case in Table 1. This is
because we have recomputed the considered a posteriori
standard deviations for a relaxed set of a priori standard
deviations for ft and 7, both equal to unity, so as not to
assume any prior knowledge of their values and thereby to
isolate the Starprobe relativity experiment from all others.

Combining the Starprobe measurement with the three
existing measurements reveals the true value of Starprobe for
testing theories of gravitation. The addition of the fourth
measurement not only allows the values of the four
parameters to be determined, but both ft and a! are deter-
mined to an accuracy comparable to the accuracy of the
Viking measurement of 7. Moreover, despite the degradation
of the Starprobe determination of J2 when the larger a priori
errors for ft and 7 are assumed, the combined results give J2 to
one part in 108. While we shall not discuss the impact of these
determinations in terms of particular theories of gravitation,
it is safe to say that knowing the values of J2, ft, 7, and cey to
the predicted accuracies would reduce the number of viable
theories.

In combining the Starprobe information with existing
measurements, we have neglected the possibility of new future
measurements that would provide another independent
equation in the four parameters. Extensive tracking of the
Viking lander into the 1990s or the tracking of Venus by
means of an orbiter equipped with a ranging transponder
could provide such an independent equation, and con-
sequently reduce the dramatic contribution of Starprobe to a
determination of ft. However, in the absence of new types of
measurements, the contribution of Starprobe is impressive
and, even with new measurements, we would expect its
contribution to be significant.

Conclusions
Under the assumptions of this analysis, we find that

gravitational science objectives, in addition to an accurate
determination of J2, are achievable by Starprobe. The
parameterized post-Newtonian, preferred-frame parameter
ay can be determined to seven parts in 103, more than an
order of magnitude improvement over our current knowledge
of its value. The Moffat parameter r can be determined to 2.6
parts in 1012. This corresponds to an upper bound of
If J< 884 km.

If a 160 min period quadrupole moment oscillation exists
for the sun, its amplitude A can be determined to about two
parts in 108. For the baseline case, the phase angle ty [see Eq.
(5)] was set equal to zero. For other phase angles, the ac-
curacy with which A is determined did not vary.

The ability of Starprobe, with the nominal orbital in-
clination of 90 deg with respect to the ecliptic plane, to detect
the distortion hypothesized by Dicke or, in general,
longitudinal variations in the solar gravitational potential, is
limited. Although the orbit is not quite polar, since the solar
equatorial plane is inclined 7.25 deg with respect to the ecliptic
plane, the range of longitudes covered is rather small due to
the short duration of the flyby (-20 h) and the long rotation
period of the sun ( — 25 days). Nonetheless, Starprobe can
provide some information on the pair of gravitational
potential parameters (C21,S21). Whether this information
concerns just one of the parameters or a combination of the
two depends on the specific longitudes probed by the
spacecraft. The parameters C22 and S22 are not observable,
assuming that the nominal trajectory is flown. Obviously,
lower inclination orbits would be preferable for detecting
longitudinal variations in the potential; however, for these
orbits, the ability to determine J2 is compromised. An in-
termediate inclination may be the answer.

The magnitude of the specific angular momentum L is not
observable, under the assumptions of this analysis. This is
true even with an order of magnitude improvement over the
assumed baseline Doppler data accuracy.

The parameter J2 can be determined to 2.5 parts in 108. In a
previous covariance analysis,12 which did not include the
parameters a]f T, A, C2l, S2l, C22, or S22 in any manner, it
was found that J2 could be determined to 1.6 parts in 108.
Thus, the inclusion of the additional parameters degrades the
J2 determination only slightly. The parameters ft and 7 are not
observable in the present analysis. In the previous analysis, ft
was unobservable, but the uncertainty in 7 was reduced from
its assumed a priori level. However, the resulting deter-
mination was not at all competitive with that by the Viking
time-delay experiment.

Finally, combining the expected information from the
Starprobe mission on the parameters J2, ft, y, and a.j with
that from three existing measurements (Mercury's perihelion
advance, the Viking time delay, and the synodic perturbtion
of the lunar orbit), we find that the values of the four
parameters can be determined to accuracies sufficient to
reduce the number of viable gravitational theories.

Appendix
In isotropic Cartesian coordinates, the gravitational field

external to a spherical distribution of mass is defined by the
following metric in the Moffat theory13:

C2dt2

K)'
2r

(Al)

where ds is the differential distance between two "world
points" in the space/time continuum and the remaining
variables are defined as for Eq. (4). When the parameter r is
set equal to zero, the metric of Eq. (Al) reduces to the Sch-
warzschild solution of the Einstein field equations. In the
solar system, the parameter Rs is the mean radius of the sun.

For purposes of describing the paths of planets, spacecraft,
and light rays in the solar system, only the post-Newtonian
terms in Eq. (Al) are important. These terms can be isolated
by expanding the time part of the metric to second order in
m/r and the space part of the metric to first order in m/r. The
metric that results is sufficient to represent the Moffat theory
at the post-Newtonian level, and with r = 0 it represents the
Einstein theory as well. It can be generalized further to in-
clude a broader class of gravitational theories by adding the
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parameters & 7, and a;.15 The final form of the metric used
for Starprobe studies is given by the expression

/m\
( — \

(A2)

where wxf wy, and wz are the components of the vector w and
w is its magnitude. The vector is as defined for Eq. (4).

Equations of Motion
In a metric theory of gravitation, such as general relativity,

the equations of motion for freely falling particles are given
by the equations of the geodesic path in the space/time
continuum defined by the metric. The equations for this four-
dimensional path can be found by the usual methods of
Riemannian geometry, but it is easier in the post-Newtonian
approximation to make use of the fact that the integral
\(ds/dt)dt is stationary along the path and to define a
Lagrangian L for the motion by

dt
(A3)

The equations of motion follow by means of the Euler-
Lagrange equations. But first, in forming the Lagrangian of
Eq. (A3) from Eq. (A2), we employ the binomial expansion;
and it is necessary to decide on where to truncate the infinite
series. The Starprobe spacecraft will approach the sun at
about four solar radii, and hence r a / r < 6 x l O ~ 7 and
v2 /c2 ~2m/r, where v is the magnitude of r. As a result of the
Viking time-delay experiment, the parameter r is limited in
magnitude to 1.4xlQ-7 (see Ref. 18), and therefore
T(Rs/r)4<6x\Q-l°. Also w~v. For Starprobe, it is
reasonable to keep terms of second order in m/r, v2 /c2, and
w2 /c2 and to keep products of r with these three quantities. If
all terms of higher order are neglected, then the Lagrangian of
Eq. (A3) is given by

r 2

The Euler-Lagrange equation in vector form is

dr (A5)

Substituting Eq. (A4) into Eq. (A5) and carrying out the
differentiations yields the equation of motion

where the accelerations in the post-Newtonian terms [i.e.,
those with a coefficient of ( 2 y + l ) ( m / r ) , Q.5(f-r)/c2, or
0.5 r ( R s / r ) 4 } have been replaced by their Newtonian ex-
pression

Newton ̂ -V/r3 (A7)

and ^ has been redefined as (1 -0.5a7w2/c2) times the /* that
appears in Eq. (A4).

Gravitational Time Delay
If a light ray or radio signal is sent through the solar

system, the time of propagation of the signal between two
points in space will be delayed by the gravitational field of the
sun. The light ray will propagate along a null geodesic (ds^O)
and, according to Eq. (A2), the coordinate velocity v of the
light ray will, to the first order, be determined by

(A8)

Here r is the coordinate distance between the sun and a point
on the path of the light ray. Then, if the derivation of the
signal delay is restricted to first-order terms, the total
propagation time At for the signal can be obtained by in-
tegrating c/v along a straight line path between the two points
in space separated by coordinate distance p.

The value of At for the straight path between the Earth and
Starprobe is given by the integral

<=\p(-)J 0 \V /
-dp (A9)

where, from Eq. (A8), c/v is given to first order by the
truncated series

(A10)

Two integrals, jdp/r and jdp/r*, are needed. The easiest
evaluation of these integrals is obtained by transforming to
the angle variable 62 by means of the two identities

and

P =

r=

sin(07+02)

rEsinO}

s in(0 7+0 2 )

(All)

(A12)

The variables r£, 07 , and 62 were defined earlier following Eq.
(6). Note that the angle 07 and the distance rE remain constant
as r, p, and 62 vary over the path of the light ray. Thus, the
derivative of Eq. (Al 1) yields

H =P~
and

or

s in 2 (0 7 +0 2 )

r ' dp = r h d02

Jo r J o sin(07 + 02)

(A13)

(A14)

(A15)

Equation (A15) can be put in a more standard form by using
relations between the sides and angles of the Earth/sun/
spacecraft triangle, to obtain

f p j g rr£+',+Pl
Jo r L/v + rp — pJ

(A16)
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where rp is as defined for Eq. (6). The physical reality and
significance of this excess time delay in a radar ranging signal
was first recognized by Shapiro,37 who derived an expression
equivalent to Eq. (A16) for the Schwarzschild metric.

The decrease in the delay in the Moffat theory is obtained
from the integral

r p dp _ r 62
Jo T7 Jo

(A17)

or

The final expression [see Eq. (6)] for the coordinate time of
propagation of a signal between the Earth and Starprobe is
obtained by combining Eqs. (A9), (A10), (A16), and (A18).
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